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 Modern time series forecasting methods are essentially rooted in the idea that the past tells us 

something about the future.  Of course, the question of how exactly we are to go about interpreting the 

information encoded in past events, and furthermore, how we are to extrapolate future events based 

on this information, constitute the main subject matter of time series analysis. 

 Typically, the approach to forecasting time series is to first specify a model, although this need not 

be so.  This model is a statistical formulation of the dynamic relationships between that which we 

observe (i.e. the so called information set), and those variables we believe are related to that which we 

observe.  It should thus be stated immediately that this discussion will be restricted in scope to those 

models which can formulated parametrically.   

 The “classical” approach to time series forecasting derives from regression analysis.  The standard 

regression model involves specifying a linear parametric relationship between a set of explanatory 

variables (or exogenous variables) and the dependent (or endogenous variable).  The parameters of the 

model can be estimated in a variety of ways, going back as far as Gauss in 1794 with the “Least Squares” 

method, but the approach always culminates in striving for some form of statistical orthogonality 

between the explanatory variables and the residuals (or innovations) of the regression.  That is, we wish 

to express the linear relationship in a dichotomous form in which the innovations represent that part of 

our information which is completely unpredictable.  It should probably also be emphasized that in the 

engineering context this is analogous to reducing a signal to “white noise.” 

 However, this review is to be concerned with more “modern” approaches and in many ways, it was 

the practical necessities of engineering that provided an initial impetus.  Both Wiener (1949) and 

Kolmogorov (1941) were pioneers in the field of linear prediction, and while their approaches differed 

(Wiener worked in the frequency domain popular amongst engineers, while Kolmogorov worked in the 

time domain), it is clear that their solutions to the same basic geometrical problem were equivalent (see 

Priestley (1981) ch.10).  Wiener’s work, in particular, was especially relevant to modern time series 

forecasting in that he was among the first to rigorously formulate the problem of “signal extraction.”  

That is, given observations on a time series corrupted by additive noise, what is the optimal estimator 

(in the mean-squared error (MSE) sense) of the latent or underlying signal (or state variable). 

 Given the historical context of massive systems of equations models popular among 

macroeconometric forecasters of 1950’s (see for example the Klein-Goldberger model (1955) or 

Adelmans (1959) for details) it quickly became apparent that forecasting models derived from a signal 
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extraction context forecasted at least as well as those based on complicated systems of economic 

relationship equations formulated as individual, yet interconnected, dynamic classical regressions.   

 Methods such as the U.S. Bureau of the Census X-11 and its later developments such as the X-11 

ARIMA and X-12 ARIMA  1were able to extract seasonal and other cyclical component signals from a 

series by means of a iterated finite moving average procedure.  Later developments improved on this 

general method.  For example, the simple exponentially weighted moving average (EWMA)2 allowed for 

geometrically decreasing, infinite, causal, impulse response.  Holt (1957) and Winters (1960) further 

generalized this method to include a slope component in the forecast function (since the EWMA implies 

a horizontal forecast function) and also allowed for seasonal effects.  Later, Brown (1963) reformulated 

the problem in terms of a discounted least squares regression, termed “Linear exponential smoothing.”  

It turns out that Brown (1963) is a special case of Holt and Winters (1957,1960). 

 These methods became popular due to their simplicity and ease of application for the general 

practitioner.  However, these methods are considered ad hoc since they fail to incorporate theoretical 

considers into their decompositions of cyclical components and they are formulated without recourse to 

a well specified statistical model.  Consequently, they also do not allow for prediction intervals since 

there is no accounting for predictive variance.   

 Despite this, Makridakis and Hibbon (1979) seemed to suggest that simple ad hoc methods tended 

to forecast at least as well as more complicated methods.  However, in response Newbold (1983) 

contended that it is not with slavishly applying different methods that we should be concerned with but 

rather, that we should consider the relevant issues involved in forecasting any particular series in its own 

right.  That is, the choice of method should be of secondary importance to the approach – which itself 

depends on characteristics of the particular series—and that our time would be better spent in 

considering case studies which evaluate how various approaches to forecasting complement the nature 

of the data, as opposed to “blind” horseraces between methods. 

 With this in mind, it seems important then to consider more modern approaches which permit us 

greater flexibility in specifying a well-defined statistical model, as opposed to restrictive ad hoc 

methods.  Moreover, this approach should free us to incorporate an economic rationale for our choice 

of particular forecasting method.  It is in this sense that perhaps the first great example of this type of 

analysis was presented by Muth during the early 1960’s.   

 In 1960, Muth established the statistical properties of the EWMA in terms of the Wold 

decomposition.  It was shown that this method of signal extraction implied: 1) a constant forecast 

function across forecast horizons 2) a random walk plus noise model in the levels of the series.  The 

former comes about since the forecast is a weighted average of the past innovations but where the 

weights are all equal; that is, “the best forecast for the time period immediately ahead is the best 

forecast for any future time period, because both give estimates of the ‘permanent’ component.”  The 

                                                           
1
 see Findley et. al. (1992,1996) for an overview, or Macaulay (1931) for the original exposition. 

2
 This is also referred to as “exponential smoothing” in the literature. 
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latter is derived directly from the fact that  [  |       ]  ∑       
 
      

  ∑       
 
    implies, 

under     (     
 )  and    ∑   

 
                      that     (   )

          (   )  

 Muth (1960) was motivated by concerns he had over the notion of Adaptive Expectations as 

formulated by Cagan (1956) and applied by Friedman (1957) within the context of Friedman’s 

Permanent Income hypothesis.  Since Adaptive Expectations can be formulated as an EWMA on the 

levels of the series, Muth’s problem (as illustrated above) was to find the “inverse optimal predictor”—

that is, for what discrete-time, univariate, stochastic process is the discrete-time version of the adaptive 

expectations mechanism (i.e. EWMA) optimal in the MSE sense? (Hansen and Sargent,1983).  The 

answer was of course, a random walk plus noise process in the levels—one which held rather strict 

implications for economic time series forecasting. 

 In 1961, Muth further generalized the statistical formulation of Adaptive Expectations into what he 

called Rational Expectations.  This new conception of expectations formulation implied a more general 

form for the stochastic linear representation of the series than the random walk plus noise model, and 

represented a major precursor to the later “structural time series” approach of Nerlove, Harvey, Young 

and others. 3  Moreover, this generalization allowed us more flexibility to incorporate various 

assumptions about the underlying DGP of the levels process according to the prescriptions of economic 

theory. 

 Nerlove (1967), building on Muth’s ideas and his own past work on optimal lag distributions 4 (see 

Nerlove and Wage (1964) for example), heavily emphasized theoretical contribution to model selection 

specifically that of appropriately specified expectations formation.  Here, rather than assume that 

agents respond to forecasts of future values of economic variables they directly observe, Nerlove 

defined what he called “unobserved components” (UC) or underlying economic variables not directly 

observable by agents; postulating instead that agents respond to the minimum mean squared error 

“extractions” of these unobserved components. 5 Furthermore, Nerlove also emphasized that the nature 

of the selected decomposition should be derived from an optimization model over time (although it was 

not until Taylor (1970) that this was done, within the context of production theory of the firm). 

 Despite the valuable contributions to frequency-domain analysis that Nerlove and others made to 

the study of seasonal and other cyclical features of time series during the late 1960’s (see for example 

Nerlove and Grether (1970)), the 1970’s were to become dominated by the time-domain analysis 

techniques advocated by Box and Jenkins (1970).  There are various reasons for this.  The main reason 

perhaps was that Box and Jenkins provided a complete methodology that resolved many practical issues 

in applying time series forecasting and optimal control, and did so in a way that was easy for the analyst 

to implement.  For example, Box and Jenkins focused on the so called transfer function models which 

                                                           
3
 “Structural” in this sense differs from the classical systems of equations interpretation.  Here what is meant is 

that some sort of stochastic structure is imposed on the levels of the series    so as to capture cyclical components 
within a decomposition.  That is, all “structural” models are the direct stochastic analog of         

∑            where       ,   is a linear deterministic time trend, and the     ’s are seasonal dummy variables. 
4
 By “lag distribution” in this context what is meant is the autoregressive coefficient function. 

5
 It is worth noting that nearly all of his formal presentation draws directly from Wiener (1949). 
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provided an easily estimable time-domain representation of a frequency-domain concept familiar to 

engineers and system control theorists.  The notion that an infinite, causal, impulse response function 

might well be approximated by a ratio of finite z-polynomials was an important step.   Second, Box and 

Jenkins provided a way around the problem of non-stationarity by means of a methodology focused on 

differencing the data.  At this point, Bell (1984) had not yet formulated the solution to the Wiener 

optimal signal plus noise extraction problem under non-stationarity.  And even if he had, the 

computational capabilities of the time were unable to handle the complex Fourier operations required 

to practically implement a Wiener type frequency-domain analysis in any practical way.6  Finally, it was 

suggested that ARIMA models might well make suitable forecasting models since it turned out that 

many of the previous ad hoc methods were represented as special cases: for example the ARIMA(0,1,1) 

model leads to forecasts produced by an EWMA, while the ARIMA(0,2,2) corresponds to Holt’s method 

(1957).7 

 Moreover, Box and Jenkins also provided a simple means of modeling seasonality within the time-

domain.  The so called “airline model” 8 proposes a rational impulse response function of the type 

 ( )  
(    )(     )

   
 so that     ( )   s.t.       .  The success of the airline model led to the 

general multiplicative seasonal SARIMA process of order (     )  (     )  :   (  ) ( )    
    

    ( 
 ) ( )  .  Therefore the airline model is the special case of (     )  (     )   with no 

constant. 

 However, it should be noted that despite the success of the Box-Jenkins approach to forecasting 

during the 1970’s, there were still some who chose to work within a structural time series framework.  

For example, Harrison and Stevens (1976) were successful in formulating the linear, Gaussian, 

Markovian state-space model within a Bayesian context.  Working with the Kalman filter, they were able 

to specify their “dynamic linear model” (DLM) based on time varying parameters in order to account for 

nonstationarity.  Moreover, the Bayesian approach allows one to specify prior distributions on not only 

parameters, but also the initial conditions, facilitating convergence of the Kalman gain matrix.  

Furthermore, Harrison and Stevens is important in another respect since it represented an important 

foundation for the later non-linear regime switching models of the late 1980’s (see for example 

Hamilton, 1989). 

 During the 1970’s Nerlove continued working within the UC framework, culminating in his book with 

Grether and Carvalho (Nerlove et. al. 1979).  This volume represented the cornerstone of future UC 

                                                           
6
 It is of note in fact that two other developments arose specifically in an attempt to circumvent the computational 

problem:  the development of the Kalman filter in (1960) and the Cooley-Tukey Fast Fourier Transform algorithm in 
(1965).  Furthermore, in Schweppe (1965) it was demonstrated that the likelihood function of the Gaussian linear 
model employed in the Kalman filter could be evaluated via the prediction error decomposition which made 
parameter estimation feasible.   However, despite the usefulness of these novel approaches, neither was widely 
applied within the econometrics literature at least until the late 1970’s (see for example Engle (1978) or Harrison 
and Stevens (1976)).  During the early 1980’s, however, Harvey widely advocated use of the Kalman filter to 
estimate his generalization of the Unobserved Components models established by Nerlove in (1967). 
7
 See Box and Jenkins (1970) pg.105-112. 

8
 See Box and Jenkins (1970) ch.9 
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modeling, including work by Harvey during the 1980’s.  While not only containing an illuminating history 

of UC as an epistemological principle all the way back to the days of Kepler, the authors laid out in great 

detail the probabilistic foundations, formulation, analysis, and estimation of UC models.  Chapter 4 deals 

with the so called canonical form of the UC model 9 and provides a general algorithm for deriving it given 

more complicated UC formulations.  Note that typically the particular specification of the structural form 

will imply restrictions on the parameters of the canonical form (i.e. reduced form). 10  Chapter 6 also 

discusses how to go about choosing an appropriate UC form – note that as opposed to the Box and 

Jenkins approach of appealing to the time-domain features through the sample (partial) autocorrelation 

function (SACF), Nerlove suggests rather that the features of the UC decomposition should be informed 

by the spectral characteristics of the time series.  In fact, one of the major criticisms facing ARIMA 

modeling of the Box-Jenkins type was the over reliance on the SACF estimator (within the so called 

“identification stage”) which was known to exhibit poor statistical properties (see Hannan (1960)).  

Estimation methods are provided in both the time-domain (by maximum-likelihood estimation of the 

parameters of the reduced form ARMA model implied by the canonical form and then mapping these 

estimates back into the parameters of the UC form) and in the frequency domain (avoids the need 

deriving the canonical form entirely) by a method suggested by Hannan (1969). 

 Engle (1978) continued to work within the UC framework, specifically dealing with estimating 

structural models of seasonality in response to work done by Nerlove and Grether (1970), Nerlove 

(1967) and Nerlove (1972).  Engle defined what he calls the UCARIMA model (unobserved components 

autoregressive moving average), suggesting the class of ARIMA processes as ideal components within a 

UC framework intended for modeling seasonality.   The UCARIMA representation decomposes the 

process                into individual ARIMA processes (where    is the trend component,    is 

some seasonal component,    is a non-seasonal cyclical component, and    is some residual irregular 

component.)  For example Harvey’s Local Level (with random walk) model is actually a special case of 

the UCARIMA framework where only the trend and irregular components are modeled together as a 

single ARIMA process.  The distinguishing feature of Engle’s UCARIMA framework, however, is not that it 

decomposes the process—it is rather that the components are explicitly defined as a statistical model of 

seasonal variation, as opposed to purely ad hoc signal extractions methods like the X-11.  Moreover, in 

the vein of Pagan (1975), Engle employs the state-space framework and Kalman filter to estimate the 

latent components themselves once the parameters of the structural form are provided (Engle assumes 

they are known).    

 Finally, it is interesting to note that this paper highlights some of the difficulties UC models present, 

such as the often bewildering identification conditions, especially in the multivariate case.  In this sense, 

while the structural form implies a specific UCARIMA form, the UCARIMA form corresponds with an 

infinite number of possible structural forms.  Therefore the class of structural models forms a subset of 

the UCARIMA models and it is therefore possible that there does not exist a structural form for all 

                                                           
9
 That is, the reduced form    

 ( )

 ( )
   where    has been rendered stationary by some method, perhaps 

differencing, wherein the differencing operators would show up as factors of  ( ). 
10

 See Harvey (1989) pg.67 for some simple examples given basic structural UC forms. 
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UCARIMA specifications (Ledolter (1984) cites this as a general deficiency of the structural approach, as 

the same argument also applies to Nerlove’s canonical form representation). 

 Despite these issues, during the 1980’s authors such as Harvey (1984) brought the use of the UC 

framework, for both modeling and forecasting economic time series, into the mainstream.  Harvey 

(1984), entitled “A unified view of statistical forecasting procedures,” set out to advocate that a UC, or 

structural framework, where the structure of a time series is decomposed into trend, seasonal and 

irregular components,  could both account for and generalize previous approaches such as the ad hoc, 

Box-Jenkins, and Harrison-Stevens methodologies.  Later, in 1989, Harvey also consolidated many of the 

results of this period into a book “Forecasting, structural time series models, and the Kalman filter.”  

However, it is not so clear what Harvey specifically contributed to the UC framework that wasn’t already 

achieved by Nerlove or Harrison and Stevens.  For example, it was J. Ledolter (1984) that suggested in 

his comments of Harvey (1984) that “apart from a somewhat different and also more restrictive 

characterization of the seasonal component, this model is basically the same as the one developed by 

Harrison and Stevens (1976).” 

 Ultimately, Harvey’s main contributions lay in the area of estimation theory.  For example, in Harvey 

and Franzini (1983) the authors develop a test between the null hypothesis of a deterministic trend plus 

seasonal model of the type         ∑           , 
11 and the alternative stochastic analog model 

(the Local Linear Trend)             s.t.                                   where 

   represents the trend (         ) and ∑        
   
    defines the seasonal component 

(      ). 

 It was also suggested within Harvey and Todd (1983) that Local Linear Trend models of the kind 

above provide a useful alternative to the seasonal SARIMA models of Box-Jenkins.  That is, instead of 

working first with some SARIMA model and imposing restrictions so as to ensure the existence of a 

structural decomposition (i.e. trend, seasonal, and irregular) (as is done in Hillmer and Tiao (1982) in a 

way consistent with an structural model estimated by X-11), the authors work in the opposite direction, 

specifying first the structural form which will then generate the required reduced form parameter 

restrictions directly. 12  The structural approach is then set in a horserace against the Box-Jenkins 

seasonal forecasting approach and it is suggested that the structural approach compares well with the 

alternative.   

 Harvey was also an early adopter of the application of the Kalman filter to the problem of time 

series estimation.  For example, in Harvey and Phillips (1979) the authors cast a regression model with 

ARMA disturbances in a state-space form and employ the Kalman filter in avoiding computational 

difficulties associated with MA type disturbances and inversion of their associated covariance matrix.  

Moreover in 1980, Harvey, Gardner, and Phillips published an algorithm, along with Fortran 66 code, for 

the exact Maximum Likelihood estimation of ARMA models by means of Kalman filtering.  Later, Harvey 

                                                           
11

 Where       ,   is a linear deterministic time trend, and the     ’s are seasonal dummy variables. 
12

 See again the Nerlove canonical form discussion above. 
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applied the Kalman filter to the extraction of unobserved components (see Harvey and Todd (1983), and 

Harvey (1984),(1989), and Harvey and Jaeger (1993)). 

 Note that trend models of the Local Linear Trend type above represent what Young (2011) ch4. 

pg.66 refers to as the Generalized Random Walk (GRW), since they include Harvey’s Local Linear Trend 

model (see Harvey (1984,89) or Harrison and Stevens (1976)), 13 the Integrated Random Walk, the 

Smoothed Random Walk, the AR(1) process, and Damped Trend all as special cases.  The flexibility of this 

type of stochastic trend model is significant since it avoids the issue of spurious relationships implied by 

deterministic trends of the type         (see Nelson and Kang (1981,84)).14  Note that the Local 

Linear Trend model is significant in the sense that it generalizes the ad hoc method proposed by Holt 

(1957) to the signal plus noise case.  Take for example that Holt’s recursions can be re-expressed as: 

         (    )(         )                 

      (       )  (    )                 

which is the same form of the Local Linear Trend model, except the innovations are not stochastic i.e. 

                     |   .  Therefore, the signal is observable in Holt’s filter; that is we 

assume a (     ) and then each (     ) are known with certainty given the filter parameters (     ) 

and the data   .  This contrasts with the Local Linear Trend model where the signal for the trend    and 

slope    must be extracted from the additive noise (       ) and the observations   .  This is exactly 

why the Kalman filter is useful within this context, since the Local Linear Trend model is by construction 

a state-space formulation.  Moreover, note that under the Local Linear Trend model, we must specify an 

explicit statistical model and in doing so we impose probability laws on the stochastic process for the 

trend.  It is these laws that then allow us to do forecast inference which is not possible with the ad hoc 

filtering methods. Finally, the nature of a slow moving stochastic trend is its ability to parsimoniously 

capture and extrapolate what might otherwise possibly be an extremely non-linear (maybe even 

chaotic) “true” underlying deterministic process that exists in the real world. 

 In contrast to the UC approach of Harvey, Nerlove, and others, Beveridge and Nelson (1981) 

described an alternative form of decomposition.  As the paper’s introduction explains, since Nerlove 

(1967) had approached the problem of an appropriate time series decomposition from a signal 

extraction perspective, he faced the fundamental problem of prior knowledge of the particular 

stochastic process generating his unobserved components. 15 Moreover, it was suggested that studies 

such as Mintz (1969) that attempted to isolate business cycles using ad hoc methods such as the X-11 

were flawed both practically and theoretically—the former because of problems with extrapolation 16 

inherent in the X-11 method and theoretically because “ideally the procedure for extraction of trend 

                                                           
13

 Note that the Local Linear Trend model is actually due to Harrison and Stevens (1976).  See page 217. 
14

 It is worth noting that this type of deterministic trend function formed the basis of Brown’s (1963) discounted 
least squares Linear Exponential Smoothing (LES) filter.  Furthermore, note that if     then LES reduces to 
EWMA (see Harvey (1984) pg.252). 
15

  Which incidentally was also a motivation behind the Bayesian approach employed by Harrison and Stevens 
(1976). 
16

 The so called “end-points” problem. 
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should be appropriately tailored to the stochastic properties of each series considered.”  Furthermore, 

the authors also comment on Muth (1960) in suggesting that while “an important virtue of [Muth’s] 

approach is its freedom from determinism … to interpret ‘permanent’ as ‘expected’ requires rather 

strong prior assumptions about the stochastic structure of the series in question.”  It is easy to counter 

these statements, however.  First, the fundamental problem of prior knowledge a signal extraction 

approach entails can also be viewed more positively as a strength of the framework, not a limitation, 

since it allows us to both build and investigate models where the trend is variously specified under 

different possible stochastic formulations.  In fact, the Beveridge-Nelson (BN) decomposition suffers 

from a very rigid interpretation of trend and cycle: that is, the BN decomposition implies a pure random 

walk with drift trend where cycles are simply differences of the current level of the series from the 

trend.  Therefore, it seems strange that BN would criticize Muth’s analysis on the grounds of 

generalizability since that wasn’t even the point of Muth (1960) to begin with 17 and the BN 

decomposition isn’t quite so general itself.  In fact, Zivot et. al. (2007) show that there “always exists a 

UC representation with perfectly correlated shocks that is consistent with the BN decomposition.” 

Moreover, this representation is not unique. 

 

  

                                                           
17

 The point of Muth (1960) was to demonstrate the issues inherent in an Adaptive Expectations formulation and 
to lay groundwork for the generalization outlined in Muth (1961). 
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